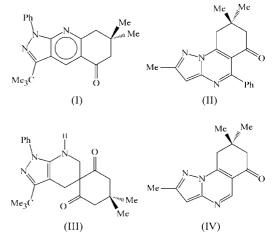
Acta Crystallographica Section C Crystal Structure Communications

ISSN 0108-2701

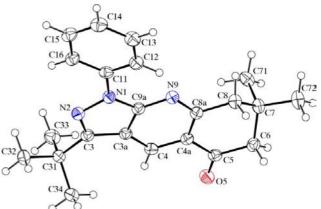
3-*tert*-Butyl-7,7-dimethyl-1-phenyl-5,6,7,8-tetrahydroimidazo[3,4-*b*]quinolin-5-one and 2,8,8-trimethyl-5-phenyl-6,7,8,9-tetrahydroimidazo-[2,3-*a*]quinolin-6-one: chains generated by C—H···N hydrogen bonds

John N. Low,^a Justo Cobo,^b Jaime Mera,^c Jairo Quiroga^c and Christopher Glidewell^d*

Correspondence e-mail: cg@st-andrews.ac.uk

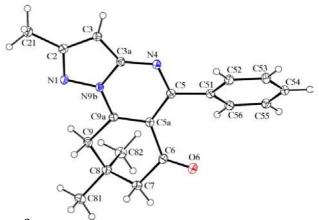

Received 5 May 2004 Accepted 10 May 2004 Online 22 June 2004

In both 3-*tert*-butyl-7,7-dimethyl-1-phenyl-5,6,7,8-tetrahydroimidazo[3,4-*b*]quinolin-5-one, $C_{22}H_{25}N_3O$, (I), and 2,8,8-trimethyl-5-phenyl-6,7,8,9-tetrahydroimidazo[2,3-*a*]quinolin-6one, $C_{19}H_{19}N_3O$, (II), the heterobicyclic portions of the molecules are planar, with naphthalene-type delocalization in (II), while the carbocyclic ring in each compound adopts an envelope conformation. In both (I) and (II), the molecules are linked weakly into chains by a single $C-H \cdots N$ hydrogen bond.


Comment

As part of a program for the synthesis of fused pyrazole derivatives (Quiroga et al., 1998, 2001; Cannon et al., 2001a,b; Low et al., 2001), we have been investigating three-component cyclocondensation reactions induced by microwave irradiation. We report here the molecular and supramolecular structures of two compounds, (I) and (II), obtained from condensation reactions between a substituted aminopyrazole, 5,5-dimethylcyclohexane-1,3-dione (dimedone) and a simple carbonyl compound or its equivalent. Thus, from the reaction involving 5-amino-3-tert-butyl-1-phenylpyrazole and formaldehyde, we have now obtained 3-tert-butyl-7,7-dimethyl-1phenyl-5,6,7,8-tetrahydroimidazo[3,4-b]quinolin-5-one, (I), in which a single formaldehyde unit has been utilized in the construction of the fused ring system. When two such units are incorporated, spiro compound (III) results (Low et al., 2004). When 5-amino-3-methyl-1H-pyrazole is used in combination

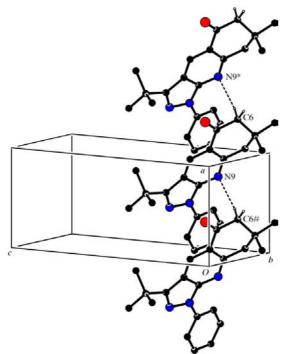
with orthobenzoic acid trimethyl ester, the product is (II), analogous to the compound, (IV), formed from this pyrazole in the presence of formaldehyde (Low *et al.*, 2004).



In both (I) (Fig. 1) and (II) (Fig. 2), the heterobicyclic portions of the fused ring systems are planar, but the carbocyclic rings are puckered. The ring-puckering parameters (Cremer & Pople, 1975) for (I) $[\theta = 127.4 (3)^{\circ} \text{ and } \varphi = 353.8 (3)^{\circ}$ for the atom sequence C4a-C5-C6-C7-C8-C8a] and (II) $[\theta = 65.2 (2)^{\circ} \text{ and } \varphi = 174.3 (3)^{\circ}$ for the atom

Figure 1

The molecule of (I), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level.


The molecule of (II), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level.

^aDepartment of Chemistry, University of Aberdeen, Meston Walk, Old Aberdeen AB24 3UE, Scotland, ^bDepartamento de Química Inorgánica y Orgánica, Universidad de Jaén, 23071 Jaén, Spain, ^cGrupo de Investigación de Compuestos Heterociclícos, Departamento de Química, Universidad de Valle, AA 25360, Colombia, and ^dSchool of Chemistry, University of St Andrews, Fife KY16 9ST, Scotland

sequence C5a-C6-C7-C8-C9-C9a] indicate envelope conformations for both these rings (Evans & Boeyens, 1989), consistent with the enforced coplanarity of atoms C5, C4a, C8a and C8 in (I), and of atoms C6, C5a, C9a and C9 in (II).

In (I), the C3a-C4 and C4-C4a bonds are of very similar length (Table 1), as are the C8a-N9 and N9-C9a bonds, consistent with aromatic delocalization within the central ring of (I). The formally single C3a-N4 and C9a-N9b bonds in (II) (Table 3) are only slightly longer than the formal double bond N1=C2, although each is significantly longer than the cross-ring C3a-N9b bond, also formally a single bond. The lengths of the C2-C3 and C3=C3a bonds, formally single and double, respectively, differ by less than 0.03 Å. These observations suggest that this heterocyclic system exhibits a degree of naphthalene-type delocalization, involving a peripheral system of ten π electrons but with only modest participation by the cross-ring bond (Glidewell & Lloyd, 1984).

In each of (I) and (II), the molecules are linked weakly into chains by means of a single $C-H\cdots N$ hydrogen bond (Tables 2 and 4); the structure of neither compound exhibits any $C-H\cdots \pi$ (arene) hydrogen bonds or aromatic $\pi-\pi$ stacking interactions. In (I), atom C6 in the molecule at (x, y, z) acts as a hydrogen-bond donor, *via* atom H6*B*, to pyridine ring atom N9 in the molecule at (1 + x, y, z), so generating by translation a *C*(6) chain (Bernstein *et al.*, 1995) running parallel to the [100] direction (Fig. 3). In (II), aryl atom C54 in the molecule at (x, y, z) acts as a hydrogen-bond donor to pyrazole-ring atom N1 in the molecule at $(1 + x, \frac{3}{2} - y, -\frac{1}{2} + z)$,

Figure 3

Part of the crystal structure of (I), showing the formation of a C(6) chain along [100]. For clarity, H atoms bonded to C atoms not participating in the motif shown have been omitted. Atoms marked with an asterisk (*) or a hash (#) are at the symmetry positions (1 + x, y, z) and (-1 + x, y, z), respectively.

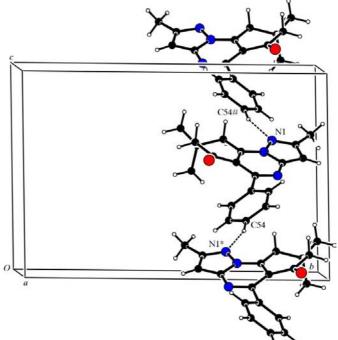


Figure 4

Part of the crystal structure of (II), showing the formation of a C(10) chain along [201]. For clarity, H atoms bonded to C atoms not participating in the motif shown have been omitted. Atoms marked with an asterisk (*) or a hash (#) are at the symmetry positions $(1 + x, \frac{3}{2} - y, -\frac{1}{2} + z)$ and $(-1 + x, \frac{3}{2} - y, \frac{1}{2} + z)$, respectively.

so producing a zigzag C(10) chain running parallel to the [201] direction and generated by the *c*-glide plane at $y = \frac{3}{4}$ (Fig. 4).

The constitutions of (II) and (IV) differ only by the presence of the phenyl substituent in (II); however, this difference profoundly influences the differences in the supramolecular structures of these compounds. In (IV), the C-H bond that is replaced by the C-phenyl bond in (II) acts as the sole hydrogen-bond donor, forming, by means of paired C-H···N hydrogen bonds, a centrosymmetric $R_2^2(6)$ dimer. Dimers of this type are then linked into chains by a single π - π stacking interaction (Low *et al.*, 2004).

Experimental

For the synthesis of (I), a mixture of 5-amino-3-tert-butyl-1-phenylpyrazole (1 mmol), dimedone (1 mmol) and formaldehyde (3 mmol) was placed in Pyrex-glass open vessels and irradiated in a domestic microwave oven for 4 min (at 600 W). The reaction mixture was extracted with ethanol and the product, (I), was isolated by column chromatography on silica gel, using CHCl₃ as eluant, and crystallized from ethanol, yielding crystals suitable for single-crystal X-ray diffraction (m.p. 413 K; yield 41%). Analysis found: C 75.5, H 7.3, N 12.1%; C₂₂H₂₅N₃O requires: C 76.0, H 7.3, N 12.1%. For the synthesis of (II), an equimolar mixture of 5-amino-3-methyl-1H-pyrazole, dimedone and orthobenzoic acid trimethyl ester (1 mmol of each) was placed in Pyrex-glass open vessels and irradiated in a domestic microwave oven for 2 min (at 600 W). The reaction mixture was extracted with ethanol and the product, (II), was crystallized from ethanol, producing crystals suitable for single-crystal X-ray diffraction (m.p. 533 K; yield 55%). MS EI (70 eV) m/z (%): 306 (23), 305 $(100, M^{+}), 304 (60), 291 (13), 290 (54), 250 (14), 249 (73), 248 (14), 220$ (13), 153 (11), 127 (16), 126 (10), 77 (29), 66 (10), 55 (10), 53 (16), 52 (13), 351 (17), 42 (20), 41 (34), 39 (35).

Z = 2

 $D_x = 1.223 \text{ Mg m}^{-3}$

Cell parameters from 4348

Mo $K\alpha$ radiation

reflections

 $\mu = 0.08~\mathrm{mm}^{-1}$

Needle, colourless

 $0.18 \times 0.08 \times 0.08 \text{ mm}$

T = 120 (2) K

 $\theta = 3.3 - 27.6^{\circ}$

Compound (I)

Crystal data

 $\begin{array}{l} C_{22}H_{25}N_{3}O\\ M_r = 347.45\\ Triclinic, P\overline{1}\\ a = 6.1514 \ (2) \ \mathring{A}\\ b = 10.3171 \ (5) \ \mathring{A}\\ c = 15.7351 \ (8) \ \mathring{A}\\ \alpha = 71.722 \ (2)^{\circ}\\ \beta = 85.780 \ (3)^{\circ}\\ \gamma = 85.306 \ (3)^{\circ}\\ V = 943.84 \ (7) \ \mathring{A}^{3} \end{array}$

Data collection

Nonius KappaCCD diffractometer
 φ scans, and ω scans with κ offsets2666 reflections with $I > 2\sigma(I)$
 $R_{int} = 0.105$ Absorption correction: multi-scan
(SORTAV; Blessing, 1995, 1997) $\theta_{max} = 27.6^{\circ}$
 $h = -7 \rightarrow 8$
 $T_{min} = 0.964, T_{max} = 0.994$
 $k = -13 \rightarrow 13$
21 211 measured reflections
 $l = -20 \rightarrow 20$

Refinement

Refinement on F^2	$w = 1/[\sigma^2(F_a^2) + (0.0633P)^2]$
$R[F^2 > 2\sigma(F^2)] = 0.059$	+ 0.3463P]
$wR(F^2) = 0.160$	where $P = (F_o^2 + 2F_c^2)/3$
S = 1.02	$(\Delta/\sigma)_{\rm max} < 0.001$
4348 reflections	$\Delta \rho_{\rm max} = 0.21 \text{ e} \text{ Å}^{-3}$
240 parameters	$\Delta \rho_{\rm min} = -0.25 \text{ e} \text{ Å}^{-3}$
H-atom parameters constrained	

Table 1

Selected interatomic distances (Å) for (I).

N1-N2	1.384 (2)	C7-C8	1.529 (3)
N2-C3	1.320 (3)	C8-C8a	1.500 (3)
C3-C3a	1.438 (3)	C8a-N9	1.338 (3)
C3a-C4	1.386 (3)	N9-C9a	1.340 (3)
C4-C4a	1.386 (3)	C9a-N1	1.368 (3)
C4a-C5	1.482 (3)	C3a-C9a	1.408 (3)
C5-C6	1.500 (3)	C4a-C8a	1.416 (3)
C6-C7	1.532 (3)		

Table 2

Hydrogen-bonding geometry ((Å,	°)	for	(I).	
-----------------------------	-----	----	-----	------	--

$D - H \cdots a$	$D-{\rm H}$	$H \cdots A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$C6-H6B\cdots N9^{i}$	0.99	2.56	3.512 (3)	161

Symmetry code: (i) 1 + x, y, z.

Compound (II)

Crystal data

2	
$C_{19}H_{19}N_{3}O$	$D_x = 1.337 \text{ Mg m}^{-3}$
$M_r = 305.37$	Mo $K\alpha$ radiation
Monoclinic, $P2_1/c$	Cell parameters from 3477
a = 7.7988 (3) Å	reflections
b = 17.0950 (6) Å	$\theta = 3.0-27.6^{\circ}$
c = 12.0231 (3) Å	$\mu = 0.09 \text{ mm}^{-1}$
$\beta = 108.8000 \ (18)^{\circ}$	T = 120 (2) K
V = 1517.41 (9) Å ³	Plate, colourless
Z = 4	$0.40 \times 0.20 \times 0.08 \text{ mm}$

Nonius KappaCCD diffractometer φ scans, and ω scans with κ offsets Absorption correction: multi-scan (SORTAV; Blessing, 1995, 1997) $T_{\min} = 0.974$, $T_{\max} = 0.993$ 21 719 measured reflections 3477 independent reflections

Refinement

Refinement on F^2
$R[F^2 > 2\sigma(F^2)] = 0.051$
$wR(F^2) = 0.134$
S = 1.03
3477 reflections
212 parameters
H-atom parameters constrained

2503 reflections with $I > 2\sigma(I)$ $R_{\text{int}} = 0.060$ $\theta_{\text{max}} = 27.6^{\circ}$ $h = -9 \rightarrow 10$ $k = -21 \rightarrow 22$ $l = -15 \rightarrow 15$

$$\begin{split} &w = 1/[\sigma^2(F_o^2) + (0.0711P)^2 \\ &+ 0.3887P] \\ &where \ P = (F_o^2 + 2F_c^2)/3 \\ (\Delta/\sigma)_{max} < 0.001 \\ \Delta\rho_{max} = 0.28 \ e \ Å^{-3} \\ \Delta\rho_{min} = -0.38 \ e \ Å^{-3} \\ Extinction \ correction: \ SHELXL97 \\ Extinction \ coefficient: \ 0.027 \ (3) \end{split}$$

Table 3 Selected interatomic distances (Å) for (II).

N1-C2	1.340 (2)	C8-C9	1.535 (2)
C2-C3	1.407 (2)	C9-C9a	1.493 (2)
C3-C3a	1.383 (2)	C9a-N9b	1.355 (2)
C3a-N4	1.358 (2)	N9b-N1	1.3625 (18)
N4-C5	1.325 (2)	C3a-N9b	1.393 (2)
C5-C5a	1.446 (2)	C5a-C9a	1.379 (2)
C5a-C6	1.495 (2)	C7-C8	1.523 (2)
C6-C7	1.513 (2)		

Table 4Hydrogen-bonding geometry (Å, $^{\circ}$) for (II).

$D-\mathrm{H}\cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$C54-H54\cdots N1^{ii}$	0.95	2.58	3.492 (2)	162
	2 1			

Symmetry code: (ii) $1 + x, \frac{3}{2} - y, z - \frac{1}{2}$.

Crystals of (I) are triclinic; space group $P\overline{1}$ was selected and confirmed by the successful structure analysis. For (II), space group $P2_1/c$ was uniquely determined from the systematic absences. All H atoms were located from difference maps and then treated as riding atoms, with C-H distances of 0.95 (aromatic), 0.98 (CH₃) or 0.99 Å (CH₂), and with U_{iso} (H) values of $1.2U_{eq}$ (C) [$1.5U_{eq}$ (C) for the methyl groups].

For both compounds, data collection: *KappaCCD Server Software* (Nonius, 1997); cell refinement: *DENZO–SMN* (Otwinowski & Minor, 1997); data reduction: *DENZO–SMN*; program(s) used to solve structure: *OSCAIL* (McArdle, 2003) and *SHELXS*97 (Sheldrick, 1997); program(s) used to refine structure: *OSCAIL* and *SHELXS*97 (Sheldrick, 1997); molecular graphics: *PLATON* (Spek, 2003); software used to prepare material for publication: *SHELXL*97 and *PRPKAPPA* (Ferguson, 1999).

X-ray data were collected at the EPSRC X-ray Crystallographic Service, University of Southampton, England; the authors thank the staff for all their help and advice. JNL thanks NCR Self-Service, Dundee, for grants that have provided computing facilities for this work. JC thanks the Consejería de Educación y Ciencia (Junta de Andalucía, Spain) for financial support. JM and JQ thank COLCIEN-CIAS and the Universidad de Valle for financial support. Supplementary data for this paper are available from the IUCr electronic archives (Reference: GG1220). Services for accessing these data are described at the back of the journal.

References

- Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.
- Blessing, R. H. (1995). Acta Cryst. A51, 33-37.
- Blessing, R. H. (1997). J. Appl. Cryst. 30, 421-426.
- Cannon, D., Quesada, A., Quiroga, J., Mejía, D., Insuasty, B., Abonia, R., Cobo, J., Nogueras, M., Sánchez, A. & Low, J. N. (2001a). Acta Cryst. E57, o151–o153.
- Cannon, D., Quesada, A., Quiroga, J., Mejía, D., Insuasty, B., Abonia, R., Cobo, J., Nogueras, M., Sánchez, A. & Low, J. N. (2001b). Acta Cryst. E57, 0157–0159.
- Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.
- Evans, D. G. & Boeyens, J. C. A. (1989). Acta Cryst. B45, 581-590.
- Ferguson, G. (1999). PRPKAPPA. University of Guelph, Canada.

- Glidewell, C. & Lloyd, D. M. G. (1984). Tetrahedron, 40, 4455-4472.
- Low, J. N., Cobo, J., Mera, J., Quiroga, J. & Glidewell, C. (2004). Acta Cryst. C60, o265–o269.
- Low, J. N., Cobo, J., Nogueras, M., Sánchez, A., Quiroga, J. & Mejía, D. (2001). Acta Cryst. C57, 1356–1358.
- McArdle, P. (2003). OSCAIL for Windows. Program for Structure Solution. Version 10. Crystallography Centre, Chemistry Department, NUI Galway, Ireland.
- Nonius (1997). *KappaCCD Server Software*. Windows 3.11 Version. Nonius BV, Delft, The Netherlands.
- Otwinowski, Z. & Minor, W. (1997). *Methods in Enzymology*, Vol. 276, *Macromolecular Crystallography*, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.
- Quiroga, J., Hormaza, A., Insuasty, B., Saitz, C. & Jullian, C. (1998). J. Heterocycl. Chem. 35, 575–578.
- Quiroga, J., Mejía, D., Insuasty, B., Abonia, R., Nogueras, M., Sánchez, A., Cobo, J. & Low, J. N. (2001). *Tetrahedron*, 57, 6947–6953.
- Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
- Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.